Academic Course Description

BHARATH UNIVERSITY

Faculty of Engineering and Technology

Department of Electronics and Communication Engineering

BCS603- Artificial Intelligence Expert System Sixth Semester, 2016-17 (Even Semester)

Course (catalog) description

The purpose of this course is to impart concepts of Artificial Intelligence and Expert System.

Compulsory/Elective course: Elective for ECE students

Credit hours : 3 credits

Course Coordinator : Ms. G.Kanagavalli Asst.Professor

Instructors :

Name of the instructor	Class handling	Office location	Office phone	Email (domain:@ bharathuniv.ac.in	Consultation
Ms. G.Kanagavalli	III year	SA019		Kanagavalli.ece@	12.30-1.30 pm
	ECE			bharathuniv.ac.in	

Relationship to other courses:

Pre –requisites : BEC001- Advanced Computer Architecture

Assumed knowledge

from the

Environment and perform actions.

Following courses : BCS002- Neural Networks

Syllabus Contents

UNIT- I

PROBLEMS AND SEARCH

a

The students will have a basic knowledge in the study of agents that receive percepts

Searching strategies- Uninformed Search- breadth first search, depth first search, uniform cost seart, depth limited search, iterative deepening search, bidirectional search - Informed Search- Best first search, Greedy Best first search, A* search – Constraint satisfaction problem, Local searching strategies.

UNIT II 9

REASONING

Symbolic Reasoning Under Uncertainty- Statistical Reasoning - Weak Slot-And-Filler-Structure - Semantic nets – Frames- Strong Slot-And-Filler Structure-Conceptual Dependency-Scripts- CYC.

UNIT III 9

KNOWLEDGE REPRESENTATION

Knowledge Representation - Knowledge representation issues - Using predicate logic - Representing Knowledge Using Rules. Syntactic- Semantic of Representation – Logic & slot and filler - Game Playing – Minimal search- Alpha beta cutoffs – Iteratic deepening planning – component of planning system – Goal stack planning.

UNIT IV 9

NATURAL LANGUAGE PROCESSING

Natural Language Processing –Syntactic processing, semantic analysis-Parallel and Distributed Al-Psychological modeling- parallelism and distributed in reasoning systems – Learning -Connectionist Models – Hopfield networks, neural networks

UNIT V

EXPERT SYSTEMS 9

Common Sense –qualitative physics, commonsense ontologies- memory organization -Expert systems –Expert system shells- explanation – Knowledge acquisition -Perception and Action – Real time search- robot architecture.

TOTAL NO OF PERIODS: 45

TEXT BOOKS

- 1. Elaine Rich Kevin Knight, "Artificial Intelligence", 3/e, Tata McGraw Hill, 2009.
- 2. Russell, "Artificial intelligence: A modern Approach, Pearson Education, 3rd edition, 2013

REFERENCE BOOKS

- 1. Artificial Intelligence and Expert system by V.Daniel hunt, Springer press, 2011.
- 2. Nilsson N.J., "Principles of Artificial Intelligence", Morgan Kaufmann. 1998.
- 3.http://www.ggu.ac.in/download/Class-Note13/Artificial%20Intelligence %20and%20Expert%20System24.10.13.pdf

Computer usage: Nil

Professional component

General - 0%
Basic Sciences - 0%
Engineering sciences & Technical arts - 0%
Professional subject - 100%

Broad area: Communication | Signal Processing | Electronics | VLSI | Embedded | Computer

Test Schedule

S. No.	Test	Tentative Date	Portions	Duration
1	Cycle Test-1	February 2 nd week	Session 1 to 14	2 Periods
2	Cycle Test-2	March 2 nd week	Session 15 to 28	2 Periods
3	Model Test	Test April 3 rd week Session 1 to 45		3 Hrs
4	University Examination	ТВА	All sessions / Units	3 Hrs.

Mapping of Instructional Objectives with Program Outcome

This course is to expose basics of Microwave components. To introduce the students			Correlates to		
to a few microwave measurements.			program		
			outcome		
	Н	M	L		
Describe the modern view of AI as the study of agents that receive percepts from the	b	d, e	а		
Environment and perform actions.					
Demonstrate awareness of informed search and exploration methods.			С		
Explain about AI techniques for knowledge representation, planning and uncertainty Management.	b	С	а		
Develop knowledge of decision making and learning methods.	е	С	а		
Describe the use of AI to solve English Communication problems.			а		
Explain the concept Knowledge Representation.			а		

H: high correlation, M: medium correlation, L: low correlation

Draft Lecture Schedul

11807	Topics	Problem solving (Yes/No)	Text / Chapter
UNITI	PROBLEMS AND SEARCH		
1.	Searching strategies-, bi ,Greedy Best first search	No	
2.	Uninformed Search- breadth first searc	No	
3.	depth first search, uniform cost seart	No	
4.	depth limited search, iterative deepening search	No	[T1]
5.	directional search - Informed Search- Best first search	No	Chapter
6.	A* search – Constraint satisfaction problem ,	No	-1
7.	Local searching strategies	No	
UNIT II	REASONING	<u> </u>	•
8.	Symbolic Reasoning Under Uncertainty	No	
9.	Statistical Reasoning	No	1
10.	Weak Slot	No	
11.	Filler-Structure	No	
12.	Frames	No	[T1]
13.	-Filler StructureScripts- CY .	No	Chapter
14.	Conceptual Dependency .	No	-2
15.	Scripts- CY	No	
16.	Strong Slot-AndC	No	
UNIT III	KNOWLEDGE REPRESENTATION		
17.	Knowledge Representation	No	
18.	Knowledge representation issues -	No	
19.	Representing Knowledge Using Rules.	No	
20.	Syntactic- Semantic of Representation	No	
21.	Logic & slot and filler	No	[T1]
22.	Game Playing – Minimal search	No	Chapter
23.	Alpha beta cutoffs	No	-3
24.	Iteratic deepening planning	No	
25.	component of planning system	No	
26.	Goal stack planning and mode of operation	No	
UNIT IV	/ NATURAL LANGUAGE PROCESSING		l
27.	Natural Language Processing	No	
28.	Syntactic processing	No	
29.	semantic analysis	No	
30.	Parallel and Distributed AI-Psychological modeling	No	[T1]
31.	parallelism and distributed in reasoning systems	No	Chapter
32.	Learning	No	-4
33.	Connectionist Models	No	-
34.	Hopfield networks	No	-
J 1.	Neural networks	No	

UNIT V EXPERT SYSTEMS				
36.	Common Sense	No		
37.	qualitative physics	No		
38.	commonsense ontologies	No		
39.	memory organization	No		
40.	Expert systems	No	[T1]	
41.	Expert system shells	No	Chapter	
43.	explanation – Knowledge acquisition	No	-5	
44.	Perception and Action	No		
45.	Real time search- robot architecture.	No		

Teaching Strategies

The teaching in this course aims at establishing a good fundamental understanding of the areas covered using:

- Formal face-to-face lectures
- Laboratory sessions, which support the formal lecture material and also provide the student with practical construction, measurement and debugging skills.
- Small periodic quizzes, to enable you to assess your understanding of the concepts.

Evaluation Strategies

 Cycle Test - I
 10%

 Cycle Test - II
 10%

 Model Test
 25%

 Attendance
 5%

 Final exam
 50%

Prepared by: G.Kanagavalli Assistant professor, Department of ECE Dated: 10-7-2017

Addendum

ABET Outcomes expected of graduates of B. Tech / ECE / program by the time that they graduate:

Engineering Graduate will have

- a)an ability to apply knowledge of mathematics, science, and engineering fundamentals.
- b)an ability to identify, formulate, and solve engineering problems
- c)an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
- d)an ability to design and conduct experiments, as well as to analyze and interpret data
- e)an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice
- f)an ability to apply reasoning informed by a knowledge of contemporary issues
- g)an ability to broaden the education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
- h) an ability in understanding of professional and ethical responsibility and apply them in engineering practices
- i) an ability to function on multidisciplinary teams
- j) an ability to communicate effectively with the engineering community and with society at large
- k) an ability in understanding of the engineering and management principles and apply them in Project and finance management as a leader and a member in a team.

Program Educational Objectives

PEO1: PREPARATION:

To provide strong foundation in mathematical, scientific and engineering fundamentals necessary to analyze, formulate and solve engineering problems in the field of Electronics And Communication Engineering.

PEO2: CORE COMPETENCE:

To enhance the skills and experience in defining problems in Electronics And Communication Engineering design and implement, analyzing the experimental evaluations, and finally making appropriate decisions.

PEO3: PROFESSIONALISM:

To enhance their skills and embrace new Electronics And Communication Engineering Technologies through self-directed professional development and post-graduate training or education

PEO4: SKILL:

To provide training for developing soft skills such as proficiency in many languages, technical communication, verbal, logical, analytical, comprehension, team building, inter personal relationship, group discussion and leadership skill to become a better professional.

PEO5: ETHICS:

Apply the ethical and social aspects of modern communication technologies to the design, development, and usage of electronics engineering.

Course Teacher	Signature
Ms.G.KANAGAVALLI	

Course Coordinator	Academic Coordinator		Professor In-Charge		HOD/ECE	
(Ms.G.Kanagavalli)	()	(Dr.)	(Dr.M.Sangeetha)	